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Working within Bishop-style constructive mathematics, we examine some of the consequences of the anti-
Specker property, known to be equivalent to a version of Brouwer’s fan theorem. The work is a contribution to
constructive reverse mathematics.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

In this paper we continue the discussion [4, 8], within Bishop’s constructive mathematics (BISH)1), of gener-
alisations of the anti-Specker property for [0, 1] (relative to R) – that is,

If (zn)n�1 is a sequence in R that is eventually bounded away from each point of [0, 1] , then (zn)n�1

is eventually bounded away from the entire interval [0, 1].2)

Specifically, we are interested in
– the connection between generalised anti-Specker properties and the positivity of the infimum of a positive-

valued function on a compact – that is, complete, totally bounded – metric space, and
– the question whether every space with a generalised anti-Specker property is totally bounded.
This work lies within the programme of constructive reverse mathematics, in which, on the one hand, we

examine the constructive equivalence of classical statements (see, for example, [11, 17]), and on the other, we
seek, for example, to classify theorems according to the version of the fan theorem to which they are equivalent
[14, 15, 16, 26]. It is known that, within BISH, the anti-Specker property for the interval [0, 1] is equivalent
to Brouwer’s fan theorem FTc for ‘c-bars’.3) Although FTc is not adopted as a principle of BISH, since it
holds in the intuitionistic model of BISH it (and therefore the anti-Specker property for compact metric spaces)
can be regarded as more-or-less constructive, at least provided you are prepared to dispense with a recursive
interpretation of your constructive mathematics.

∗ Corresponding author: e-mail: D.Bridges@math.canterbury.ac.nz
∗∗ e-mail: diener@math.uni-siegen.de
1) This is simply mathematics carried out with intuitionistic logic and within some suitable set-theoretic framework such as that found

in [1]. We shall also allow the use of countable and dependent choice.
2) The anti-Specker property is in direct opposition to Specker’s theorem, a fundamental result in recursive analysis [25]. For more about

the anti-Specker property, see [7, 8].
3) There are currently four versions of Brouwer’s fan theorem that have been investigated in the scope of constructive reverse mathemat-

ics. All of them enable one to conclude that a given bar is uniform; the difference between them lies in the required complexity of the bar.
This ranges from the very strongest requirement – decidable – to no restriction on the bar at all. Between these two extremes lie fan theorems
for bars that are c-sets and Π0

1-sets, respectively. These two fan theorems, FTc and FTΠ0
1

, are of particular interest, since one can show
that the proof-theoretic strength of the uniform continuity theorem for continuous functions on compact metric spaces lies between them; but
whether that theorem is actually equivalent to either FTc or FTΠ0

1
remains an open question. Many other analytical theorems have, however,

been shown to be equivalent to versions of the fan theorem. As it is more convenient in constructive analysis to work with purely analytical
principles, rather than logical ones, the anti-Specker property for the interval [0, 1] is an important principle to investigate. For more on these
matters, see [3, 4].
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In order to arrive at a good generalisation of the anti-Specker property for [0, 1], we need some definitions and
results from [7].

Let X be a subspace of a metric space Z, and ζ ∈ Z. For convenience, we write ‘ρ (ζ, X) > 0’ to signify that
there exists c > 0 such that ρ (ζ, x) � c for each x ∈ X, and ‘r � ρ (ζ, X)’ to signify that r � ρ (ζ, x) for each
x ∈ X. Note that in doing so, we make no assumption that the distance ρ (ζ, X) exists as an infimum.4) We define
the metric complement of X in Z to be the set

Z− X ≡ {z ∈ Z : ρ (z, X) > 0} .

If X is a subspace of Z such that Z−X is inhabited (that is, contains a point), then we call Z a metric superspace
of X. By a one-point extension of X we mean a metric superspace Z of X such that Z − X consists of a single
point. It is straightforward to construct one-point extensions of a given metric space (X, ρ).

We recall that a sequence (xn)n�1 in a metric space (Z, ρ) is said to be

– eventually bounded away from the point x ∈ Z if there exist N and δ > 0 such that ρ(x, xn) > δ for all
n � N;

– eventually bounded away from the subset X of Z if there exist N and δ > 0 such that ρ(x, xn) > δ for all
x ∈ X and all n � N;

– eventually not in X if there exists N such that xn /∈ X for all n � N;

– detachable from X, or X-detachable, if for each n, either xn ∈ X or xn /∈ X.

The following two results were proved in [7, Propositions 1,2].

Proposition 1 The following are equivalent conditions on a metric space X.

(i) There exists a metric superspace Z of X such that every X-detachable sequence in Z that is eventually
bounded away from each point of X is eventually bounded away from X.

(ii) For every metric superspace Z of X, every X-detachable sequence in Z that is eventually bounded away
from each point of X is eventually not in X.

(iii) For every one-point extension Z of X, every sequence in Z that is eventually bounded away from each point
of X is eventually not in X.

(iv) There exists a one-point extension Z of X such that every sequence in Z that is eventually bounded away
from each point of X is eventually not in X.

(v) There exists a metric superspace Z of X such that every sequence in Z that is eventually bounded away
from each point of X is eventually bounded away from X.

Proposition 2 The following are equivalent conditions on the metric subspace [0, 1] of R.

(a) Every sequence in R that is eventually bounded away from each point of [0, 1] is eventually bounded away
from [0, 1].

(b) Every [0, 1]-detachable sequence in R that is eventually bounded away from each point of [0, 1] is eventually
bounded away from [0, 1].

(c) Every sequence in R that is eventually bounded away from each point of [0, 1] is eventually not in [0, 1].

In view of these results, we call the following the (unrelativised) anti-Specker property5) of the metric space X:

AS1
X

For some one-point extension Z of X, every sequence in Z that is eventually bounded away
from each point of X is eventually not in X.

If this property holds for some one-point extension of X, then, by Proposition 1, it holds for every one-point
extension of X. With this definition at hand, we now turn to the main work of the paper.

4) In fact, ρ (ξ, X) is what Richman [23] calls an upper real.
5) A “relativised” version of the anti-Specker property is introduced in [7] along with AS1

X.
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Arguably the first paper in the modern era of constructive reverse mathematics is that of Julian and Rich-
man [18], in which it is shown that a version of the fan theorem, FTD, weaker than FTc, is equivalent to the
positivity property

POSX Every positive-valued, uniformly continuous function f on X has positive infimum

for X = [0, 1].6) Our first lemma will enable us to derive two extensions of the implication from a fan theorem
to POSX; in these extensions, we weaken the continuity requirement to a pointwise one, at the cost of replacing
FTD by the anti-Specker property. For the proof of this lemma we note that a mapping f : X −→ Y between
metric spaces is nonconstant if there exist x, x′ ∈ X such that f(x) �= f(x′) in Y.

Lemma 3 Let f : X −→ Y be a mapping between metric spaces, and let x0 ∈ X. If f is pointwise continuous
at x0, then it has the following property:

(*)
For each sequence (xn)n�1 in X, if (f(xn))n�1 is eventually bounded away from f(x0) in Y,
then (xn)n�1 is eventually bounded away from x0 in X.

Conversely, if (*) holds and X is complete, then f is sequentially continuous at x0. Furthermore, if (*) holds, f is
sequentially continuous at x0, and X is separable, then f is pointwise continuous at x0.

P r o o f. It is easy to show that if f is pointwise continuous, then (*) holds. Conversely, suppose that f has the
property (*), and let the sequence (xn)n�1 converge to x0 in X. Now, (*) implies that f is strongly extensional,
by Ishihara’s tricks [13, Lemmas 1, 2]; so for each ε > 0 we have either ρ (f(x0), f(xn)) < ε for all sufficiently
large n or else ρ (f(x0), f(xn)) > ε/2 infinitely often; but in the latter case, it follows from (*) that the sequence
(xn)n�1 has a subsequence that is bounded away from x0, which is absurd. Hence f is sequentially continuous.

Now let (an)n�1 be a dense sequence in X such that

(1) ∀n∀k∃m (m > k∧ am = an) .

Assume first that f is nonconstant, so there exists ξ ∈ X with f(ξ) �= f(x0). Given ε > 0, construct a binary
sequence (λn)n�1 such that

λn = 0 ⇒ ρ (f(x0), f(an)) >
ε

2
, and λn = 1 ⇒ ρ (f(x0), f(an)) < ε.

If λn = 0, set zn ≡ an; if λn = 1, set zn ≡ ξ. For each n we have

ρ (f(zn), f(x0)) > min
{ε

2
, ρ (f(x0), f(ξ))

}
.

It follows from (*) that there exist δ > 0 and N such that ρ (zn, x0) > δ for all n � N. Given x ∈ X such that
ρ (x0, x) < δ, suppose that ρ (f(x0), f(x)) > ε. By the sequential continuity of f and (1), there exists n > N
such that ρ (x0, an) < δ and ρ (f(x0), f(an)) > ε; then λn = 0, zn = an, and therefore ρ (zn, x0) < δ. Since
this contradicts our choice of N, we conclude that ρ(f(x0), f(x)) � ε. Hence f is pointwise continuous at x0.

To remove the nonconstancy condition on f, first let Z ≡ X ∪ {ζ} be a one-point extension of X, and extend f
to Z by setting f(ξ) ≡ f(x0); replacing X by Z, we may assume that X contains a point ξ �= x0. Next, define a
mapping F of X into the product metric space Y × R by

F(x) ≡ (f(x), ρ(x, x0)).

Then F is nonconstant. We show that it also satisfies the appropriate version of (*). Let (xn)n�1 be a sequence
in X such that there exist δ > 0 and N with

max {ρ (f(xn), f(x)) , ρ (xn, x0)} = ρ (F(xn), F(x0)) > δ

for all n � N; we may assume that N = 1. Construct a binary sequence (αn)n�1 such that

αn = 0 ⇒ ρ (f(xn), f(x0)) > δ, and αn = 1 ⇒ ρ (xn, x0) > δ.

6) The status of POSX in the context of point-free topology is dealt with in [22].

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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If αn = 0, set yn ≡ xn; if αn = 1, set yn ≡ ξ . Then

ρ (f(yn), f(x0)) � min {δ, ρ (f(ξ), f(x0))} .

It follows from (*) applied to f that the sequence (yn)n�1 is eventually bounded away from x0. Pick γ > 0 and
ν such that ρ (yn, x0) � γ for all n � ν. Then ρ (xn, x0) � min {δ, γ} for all such n. This completes the proof
that (*) holds with f replaced by F and with Y replaced by Y × R. It follows that F, and therefore f, is pointwise
continuous at x0.

The first of our results about POSX is rather weak.

Proposition 4 Let X be a metric space that has the anti-Specker property, and let f : X −→ R be a pointwise
continuous, positive-valued function. Then ¬(∀ε > 0)(∃x ∈ X) (f(x) < ε).

P r o o f. Let Z be a one-point extension of X. Suppose that for each ε > 0 there exists x ∈ X with f(x) < ε.
Then there exists a sequence (xn)n�1 in X such that f(xn) < 1/n for each n. Let x ∈ X, and compute N

such that f(x) > 2/N. Then |f(x) − f(xn)| > 1/N for all n � N. It follows from Lemma 3 that the sequence
(xn)n�1 is eventually bounded away from x. Since x ∈ X is arbitrary, the anti-Specker property of X forces that
sequence to be eventually not in X. This is clearly absurd.

Proposition 5 Let X be a metric space with the anti-Specker property, and let f : X −→ R be a pointwise
continuous, positive-valued function whose infimum exists. Then inf f > 0.

P r o o f. Construct a one-point extension Z ≡ X ∪ {ζ} of X, where ρ (ζ, X) > 0. Then construct an increasing
binary sequence (λn)n�1 such that

λn = 0 ⇒ inf f < 1/n, and λn = 1 ⇒ inf f > 1/ (n+ 1) .

We may assume that λ1 = 0. If λn = 0, choose zn ∈ X such that f(zn) < 1/n. If λn = 1, set zn ≡ ζ. Given
x ∈ X, we show that (zn)n�1 is eventually bounded away from x. To do so, first compute a positive integer such
that f(x) > 2/N. If λN = 1, then for each n � N, ρ (x, zn) � ρ (ζ, X). We may therefore assume that λN = 0.
For each k � N, define nk ≡ k if λk = 0, and nk ≡ nk−1 if λk = 1. If λk = 0, then

|f(x) − f(zk)| � f(x) − f(zk) >
2

N
−

1

nk
� 1

N
.

Thus the sequence (f(znk
))k�N is eventually bounded away from f(x). It follows from Lemma 3 that there exist

δ > 0 and K � N such that ρ (x, znk
) > δ for all k � K. Hence ρ (x, zn) � δ for all n � N such that λn = 0.

We conclude that ρ (x, zn) � min {1, δ} for all n � N. This completes the proof that (zn)n�1 is eventually
bounded away from each x ∈ X. It follows that the sequence is eventually not in X; so zn = ζ, and therefore
λn = 1, for some n. Hence inf f > 0.

If X has the anti-Specker property, does every positive-valued, continuous function f on X have an infimum?
What if f is uniformly continuous? To answer this, we note that if a metric space X has the property

“every uniformly continuous, positive-valued mapping on X has a positive lower bound”,

then X is totally bounded [6].

Proposition 6 If X is a separable metric space with the anti-Specker property, then the following are equiva-
lent:

(i) X is totally bounded.
(ii) Each uniformly continuous, positive-valued mapping on X has an infimum.

P r o o f. It is well known that (i) implies (ii); see [10, Corollary 2.2.7]. Conversely, assume (ii). Then, by
Proposition 5, every uniformly continuous, positive-valued function on X has a positive infimum. It follows from
the theorem in [6], quoted above, that X is totally bounded.

www.mlq-journal.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



438 D. Bridges and H. Diener: The anti-Specker property, positivity, and total boundedness

The preceding proposition leads to the question: is every separable metric space with the anti-Specker property
totally bounded? A partial answer is given by the next three results, though none of them has total boundedness
as a consequence.

Proposition 7 Let X be a metric space with the anti-Specker property, let (xn)n�1 be a located sequence
in X, and let ε > 0. Then it is impossible that ρ (xm, xn) > ε for all distinct m and n.

P r o o f. Suppose that ρ (xm, xn) > ε for all distinct m and n. Given x ∈ X, we have

either ρ (x, {xn : n � 1}) > ε/4 or ρ (x, {xn : n � 1}) < ε/2.

In the latter case, pick N such that ρ (x, xN) < ε/2; then ρ (x, xn) > ε/2 for all m �= N. Thus the sequence
(xn)n�1 is eventually bounded away from each point of X. By the anti-Specker property, it is eventually not
in X, which is absurd.

The following strengthens Proposition 7.
Proposition 8 Let X be a separable metric space with the anti-Specker property, let (xn)n�1 be a located

sequence in X, and let ε > 0. Then for all sufficiently large n there exists m < n such that ρ (xm, xn) < ε.

P r o o f. Construct a one-point extension Z ≡ X ∪ {ζ} of X, where ρ (ζ, X) > 0. Given ε > 0, construct a
binary sequence (λn)n�1 such that λ1 = 0 and, for n � 2,

λn = 0 ⇒ (∀k < n) (ρ (xn, xk) > ε/2) , and λn = 1 ⇒ (∃k < n) (ρ (xn, xk) < ε) .

If λn = 0, set zn ≡ xn; if λn = 1, set zn ≡ ζ. Since (xn)n�1 is located, for a given x in X either ρ (x, xn) > ε/8

for all n, or else there exists N such that ρ (x, xN) < ε/4. In the latter case, consider any n > N. If λn = 0,
then zn = xn and ρ (xN, xn) > ε/2, so ρ (x, zn) > ε/4. If λn = 1, then zn = ζ and so ρ (x, zn) � ρ (ζ, X).
We now see that the sequence (zn)n�1 is eventually bounded away from each x ∈ X. Hence, by Proposition 1,
there exists ν such that zn /∈ X for all n � ν. For all such n we must have λn = 1; whence there exists m < n
with ρ (xn, xm) < ε.

Corollary 9 Let X be a separable metric space with the anti-Specker property, let (xn)n�1 be a dense se-
quence in X, and let ε > 0. Then for all sufficiently large n there exists m < n such that ρ (xm, xn) < ε.

P r o o f. This follows from Proposition 8, since dense sequences are located.

We return shortly to the total boundedness question, for which we need
Proposition 10 Let X be a metric space with the anti-Specker property, and let f be a pointwise continuous

mapping of X onto a metric space Y. Then Y has the anti-Specker property relative to each of its one-point
extensions.

P r o o f. Construct a one-point extension Z ≡ X ∪ {ζ} of X, with ρ(ζ, X) > 0, and a one-point extension
W ≡ Y ∪ {ω} of Y, with ρ (ω,Y) > 0. Defining f(ζ) ≡ ω, we extend f to a pointwise continuous mapping
of Z onto W. Let (zn)n�1 be a sequence in Z such that (f(zn))n�1 is eventually bounded away from each
point of X. By Lemma 3, (xn)n�1 is eventually bounded away from each point of X; whence, by the anti-
Specker property, there exists N such that xn = ζ, and therefore f(xn) = ω, for all n � N. It follows that
ρ (f(xn), Y) = ρ (ω,Y) > 0 for all n � N. Thus (f(xn))n�1 is eventually bounded away from Y.

Recall that a metric space X is pseudocompact if every pointwise continuous mapping of X into R is bounded.
It is shown in [5, Theorem 2] that a separable pseudocompact metric space is totally bounded. Note, though, that
in the recursive interpretation of BISH, the interval [0, 1] is totally bounded but not pseudocompact
[2, Section IV.7, Theorem (ii)].

Theorem 11 In BISH, the following are equivalent:
(i) Every separable metric space with the anti-Specker property is pseudocompact.

(ii) Every separable metric space with the anti-Specker property is totally bounded.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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P r o o f. The implication from (i) to (ii) is a special case of [5, Theorem 2]. Conversely, assume (ii) and let
X be a separable metric space with the anti-Specker property. Given a continuous mapping f : X −→ R, we see
from Proposition 10 that f(X) has the anti-Specker property. Since f(X) is clearly separable, it follows from (ii)
that it is totally bounded. Hence f is bounded.

To give a more complete answer to the question posed before Proposition 7, we recall a definition and a
principle, both due to Ishihara. First the definition: a set A of real numbers is called pseudobounded if for each
sequence (an)n�1 in A, an/n → 0 as n → ∞. Now

BD-N Every inhabited, countable, pseudobounded set of positive integers is bounded.

Note that, as is easily shown using countable choice, we may replace positive integers by real numbers in this last
statement. The principle BD-N holds in the three standard models of BISH: classical mathematics (essentially,
BISH plus the law of excluded middle), Brouwer’s intuitionistic mathematics (BISH plus Brouwer’s continu-
ity principle and fan theorem), and recursive constructive mathematics (BISH plus the Church-Markov-Turing
thesis) [14]. However, it is not derivable in a certain formal version of BISH [19]. For more on BD-N, see [24].

Proposition 12 In BISH + BD-N, every separable metric space with the anti-Specker property is pseudo-
compact.

P r o o f. Given a separable metric space X with the anti-Specker property, construct a one-point extension
Z ≡ X ∪ {ζ} of X, where ρ (ζ, X) > 0. Let (xn)n�1 be a dense sequence in X, and f : X → R a pointwise
continuous mapping. We show that the inhabited countable subset

A ≡ {|f(xn)| : n � 1}

of R is pseudobounded. Given an increasing sequence (nk)k�1 of positive integers, construct a binary sequence
(λk)k�1 such that

λk = 0 ⇒ |f(xnk
)| > k− 1, and λk = 1 ⇒ |f(xnk

)| < k.

We may assume without loss of generality that λ1 = 0. If λk = 0, set zk ≡ xnk
; if λk = 1, set zk ≡ ζ.

Consider any x ∈ X. Since f is continuous at x, there exist δ > 0 and a positive integer K such that if x′ ∈ X and
ρ (x, x′) < δ, then |f(x′)| < K− 1. If k > K and ρ (xnk

, x) < δ, then λk = 1 and therefore ρ (zk, x) � ρ (ζ, X).
Thus (zk)k�1 is eventually bounded away from each point of X, and hence eventually not in X. We can therefore
compute κ such that for each k � κ, λk = 1 and therefore |f(xnk

)| < k. It follows from [24, Theorem 1.1] that
A is pseudobounded. By BD-N, it is bounded; whence, by continuity, the function f is bounded.

Corollary 13 In BISH + BD-N, every separable metric space with the anti-Specker property is totally
bounded and has the positivity property POSX.

P r o o f. The total boundedness follows from Proposition 12 and Theorem 11. Propositions 6 and 5 then show
that the space has the property POSX.

Can we drop BD-N from Proposition 12? Suppose we could do so. Then the c-fan theorem FTc, equivalent
(over BISH) to the anti-Specker property for [0, 1], would imply that [0, 1] is pseudocompact; in turn, this would
entail the uniform continuity theorem:

UCT
Every pointwise continuous mapping from a compact metric space into a metric space is
uniformly continuous.

(See [9, 20].) Our experience with fan theorems suggests to us that the weakest version of the fan theorem that
implies UCT is likely to be stronger than FTc, and hence that we cannot drop BD-N from Proposition 12.

So much for total boundedness. What about the (classically valid) implication from ASX to the completeness
of X? To deal with this, we recall the essentially nonconstructive principle :

LPO For each binary sequence (an)n≥1, either an = 0 for all n or else there exists n with an = 1.

www.mlq-journal.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



440 D. Bridges and H. Diener: The anti-Specker property, positivity, and total boundedness

Proposition 14 If every subspace of [0, 1] with the anti-Specker property is complete, then LPO holds.

P r o o f. Consider the subspace

X ≡ {0} ∪
{
1

n
: n � 1

}

of [0, 1]. Let (xn)n�1 be a sequence in R that is eventually bounded away from each point of X. Then there
exists a positive integer N such that |xn| > 1/N for each n � N. Pick a positive integer ν > N such that
∣
∣xn − 1

k

∣
∣ > 1

ν
for all n � ν and k ∈ {1, . . . , N}. Then |xn − x| > 1

ν
for all x ∈ X and all n � ν. Thus (xn)n�1

is eventually bounded away from X. Hence X has the anti-Specker property. Given a binary sequence (an)n�1,
define a (clearly Cauchy) sequence (ξn)n�1 in X such that if an = 0, then ξn = 1/n, and if an = 1 − an−1,
then ξk = ξn−1 for all k � n. If X is complete, then this sequence converges to a limit ξ ∈ X. If ξ = 0, then
an = 0 for all n. If ξ = 1/N for some N, then aN = 1.

Does LPO imply the completeness of every subspace of [0, 1] with the anti-Specker property? It would be
enough to prove, with the aid of LPO, that such a space X is closed in [0, 1]; but to do so seems highly unlikely
without more information about the criterion for membership of X. In fact, the proof-theoretic strength of the
statement

“every subspace of [0, 1] with the anti-Specker property is complete”

seems to lie strictly between LEM and LPO, and therefore in unexplored territory in constructive reverse math-
ematics.
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